
Analysis and design of power and bandwidth of nonlinear vibration energy
harvesters with hardening restoring forces⋆

Arata Masuda∗

Faculty of Mechanical Engineering, Kyoto Institute of Technology, Matsugasaki Gosho-Kaido-Cho, Sakyo-Ku, Kyoto 6068585, Japan

Abstract

This paper presents a theoretical foundation for designing the power and bandwidth performance of an electromagnetic
nonlinear vibration energy harvester with a hardening resonator. To this end, the steady-state solution derived via
first-order approximation is investigated to establish a graphical approach, which gives a clear perspective on how
the resonance peak point on the frequency-displacement curve is determined in terms of the excitation amplitude,
nonlinear restoring force function, and other design parameters. Then, a ν-power bandwidth, a generalized version
of the half-power bandwidth, is newly introduced and its approximate analytical formulation is derived. Based on
the findings of the parameter study on the ν-power bandwidth, a design scheme is proposed, which begins with
specifying the location of the resonance peak point that guarantees the existence of the high-energy branch under
possible variations of the excitation, followed by determining the linear natural frequency that makes the ν-power
bandwidth as large as reasonably possible. Design examples, assuming a specific class of hardening nonlinearity of
the restoring force, are shown to demonstrate how the proposed design scheme yields vibration energy harvesters with
maximized power bandwidth performance while incorporating given design requirements.
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1. Introduction

A vibration energy harvester utilizes a mechanical resonator furnished with an electromechanical transducer to
efficiently capture the mechanical energy from an environment vibration source and convert it to electric energy. In
earlier works, single-degree-of-freedom linear resonators were preferred because of their mechanical simplicity. In the
linear design, the natural frequency of the resonator has to be matched with the dominant frequency of the vibration
source, and the mechanical Q factor is designed as large as possible in order to maximize the harvested power. The
large Q factor, however, restricts the resonance to a narrow frequency band; therefore, the converted power decreases
significantly if the dominant frequency of the source moves out of this band [1, 2, 3]. This trade-off has been well-
recognized as the most critical obstacle to practical application because it requires strict tuning of the resonator to the
target source, making it difficult to use under variable source conditions and hindering the deployment of harvesting
devices as standard products.

The idea of introducing nonlinear resonators as a means for mitigating the power-bandwidth trade-off has attracted
attention for over a decade [4, 5, 6, 7, 8, 9]. Most of the reported studies utilize Duffing-type monostable oscillators
[10, 11, 12, 13, 14], zero-stiffness (essentially nonlinear) oscillators [14, 15, 16], or bistable oscillators [17, 18, 19,
20, 21]. These studies are aimed at developing a single-degree-of-freedom energy harvester that can respond largely
in a wide frequency range by exploiting the dynamic behavior of nonlinear oscillators. Among them, a Duffing-
type monostable nonlinear oscillator is one of the most promising methods when the vibration source has a single
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dominant frequency. It can achieve a broad operation frequency range by folding the resonance peak toward the higher
(lower) frequency direction by using a hardening (softening) spring instead of a linear spring. For the realization of
hardening resonators, the nonlinearity due to membrane stress caused by the stretching of the neutral axis of beam
resonators [22, 23] is often used. Using mechanical stoppers is another common strategy [10, 24, 25] to implement a
bi-linear hardening effect in the resonator design. For softening resonators, utilizing post-buckling deformation [26]
and magnetic force [12] are common ways of achieving such a realization.

Despite there being several specific designs of nonlinear harvesters in the literature, only a few works that explicitly
formulate the expected power and bandwidth and provide design formulae for power-bandwidth optimization have
been reported. In [27], Ramlan et al. derived a closed-form representation of the half-power bandwidth of a harvester
with cubic nonlinearity based on a straightforward application of the definition of the half-power bandwidth of linear
harvesters that takes the cross-section of the frequency-displacement curve with respect to the 1/

√
2 of the peak value.

Sebald et al. [28] studied the power and the bandwidth of piezoelectric energy harvesters with cubic nonlinearity. They
evaluated a half-power bandwidth by directly taking a cross-section of the power-frequency curve with respect to the
half of the peak value, and normalizing it by taking a ratio with respect to the peak frequency. Cammarano et al.
[29] derived an analytical relationship between the power, excitation frequency, and resistive load and presented its
simplification, based on which they performed optimization of the resistive load and the linear stiffness to deliver
maximum power at a specific excitation frequency. In [30], Cammarano et al. presented a comparison between
linear and nonlinear harvesters in terms of the half-power bandwidth numerically calculated based on the formulation
derived in [29]. They also proposed a conservative definition of the bandwidth to address concerns about the uncertain
operation in a frequency range where multiple stable solutions coexist.

The work presented in this paper is devoted to providing a clear theoretical perspective on the power and bandwidth
design of a nonlinear electromagnetic vibration energy harvester. To achieve this goal, the steady-state solution of the
equation of motion of a nonlinear harvester with a hardening resonator subject to a sinusoidal base excitation derived
via a first-order approximation is adopted as the theoretical foundation. A graphical approach is proposed in Section
2.3 to visualize how the resonance peak point on the frequency-displacement curve is determined in terms of the
equivalent stiffness of the nonlinear restoring force, mechanical and electrical damping, and excitation amplitude.
For the definition of the bandwidth of the hardening resonator, the problem of coexisting multiple solutions is not of
concern in this study, in contrast to the discussion in [30], by assuming the use of certain methodologies that guarantee
operation in the highest-energy solution by injecting a part of the harvested energy into the resonator [28, 31, 32, 33,
34, 35, 36, 37, 38, 39]. Then, a generalized version of the half-power bandwidth, called ν-power bandwidth, is
defined in Section 3.2, and its approximate analytical formulation is derived. The influence of the electromechanical
coupling factor and load resistance on the power-bandwidth performance is discussed in Section 3.3 to elaborate on
these dependencies and simplify the problem statement for building a design scheme. In Section 4, a design scheme
that starts with specifying the appropriate location of the resonance point, referred to as critical resonance point
(CRP), by considering possible variations of excitation frequency and amplitude, is proposed. Throughout the work, a
specific class of hardening nonlinearity of the restoring force, referred to as odd-power nonlinearity, is assumed when
providing calculation examples. Finally, the conclusions are summarized in Section 5.

2. Formulation

2.1. Modeling
The nonlinear vibration energy harvester investigated in this paper is modeled as a single-degree-of-freedom me-

chanical resonator subjected to a sinusoidal base excitation, schematically drawn in Fig. 1. The mass of the resonator
is suspended by a nonlinear hardening spring with a mechanical damping element and an electromagnetic transducer
installed in parallel between the mass and base. The electrical port of the transducer is connected to a load circuit,
which is simplified by an equivalent pure resistance R, serially connected to the internal impedance of the transducer
ZT .

The equation of motion of the harvester is given by

mẍ(t) + cm ẋ(t) + Φi(t) + f (x(t)) = −mua cosωt (1)

where t is the time, x is the relative displacement of the mass to the base, and i is the current flowing through the
induction coil; furthermore, m, cm, Φ, f (x), ua, and ω are the inertial mass, mechanical damping coefficient, force
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Figure 1: Model of a nonlinear vibration energy harvester. The harvester is modeled as a single-degree-of-freedom mechanical resonator subjected
to a sinusoidal base excitation. The mass of the resonator is suspended by a nonlinear hardening spring with a mechanical damping element and
an electromagnetic transducer installed in parallel between the mass and base. The electrical port of the transducer is connected to a load circuit,
which is simplified by an equivalent pure resistance serially connected to the internal impedance of the transducer.

factor of the electromagnetic transducer, restoring force of the nonlinear spring, amplitude of the base acceleration,
and excitation frequency, respectively. The nonlinear restoring force is assumed to be an odd-symmetric hardening
function of the displacement with the only stable zero at the origin, i.e., f (−x)=− f (x), f ′(0)>0, and f ′(α)≤ f ′(β) for
any 0≤α<β, where { · }′ denotes the first derivative. It should be noted that, although the damping coefficient and
the force factor may also be nonlinear with respect to the displacement and velocity in a practical situation, they are
assumed constant in this study for mathematical simplicity. This point will be further discussed in a later section. The
formulation that considers the nonlinearity of the damping force and the force factor can be found in [32].

The electric circuit equation is given by

LT i̇(t) + (R + RT )i(t) = Φẋ(t) (2)

where LT and RT are the inductance and resistance of the induction coil, respectively.
Assuming that the contribution of the inductance term in Eq. (2) is negligibly small at the excitation frequency,

and eliminating the current from Eqs. (1) and (2), the governing equations are reduced to

mẍ(t) + cm ẋ(t) +
Φ2

R + RT
ẋ(t) + f (x(t)) = −mua cosωt (3)

The third term on the left-hand side of Eq. (3) is the electric damping term representing the force reacting to the
velocity via electromagnetic coupling. Rewriting Eq. (3) into state equations leads to

ẋ(t) = y(t) (4)

ẏ(t) = − 1
m

[(
cm +

Φ2

R + RT

)
y(t) + f (x(t))

]
− ua cosωt (5)

2.2. Steady-state solution

The steady-state solution of Eqs. (4) and (5) are derived by following the Krylov-Bogoliubov averaging method
[40], by assuming the solution as x(t)=a cos(ωt−ψ), and y(t)= −aω sin(ωt−ψ), where a and ψ are the time-dependent
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amplitude and time-dependent phase delay to the base acceleration, respectively. Substituting them into the state Eqs.
(4) and (5) leads to a system of differential equations for the amplitude and phase delay, as follows:

ȧ = −h(a, ψ, θ)aω sin θ (6)
aψ̇ = h(a, ψ, θ)aω cos θ (7)

where θ=ωt−ψ, and the dimensionless function h(a, ψ, θ) is defined as

h(a, ψ, θ) = −−maω2 cos θ + f (a cos θ)
maω2 +

(
cm +

Φ2

R + RT

)
aω sin θ
maω2 −

mua cos(θ + ψ)
maω2 (8)

The right-hand side of Eq. (8) indicates that h(a, ψ, θ) is a 2π-periodic function of θ; furthermore, h(a, ψ, θ)=O(ε),
where ε is a positive small number (0<ε≪1), when assuming weak damping and resonant operating conditions (see
Appendix A). Thus, the left-hand sides of Eqs. (6) and (7) are again 2π-periodic with respect to θ and O(ε). Therefore,
Eqs. (6) and (7) are approximated by the following autonomous system, which is derived by eliminating θ by means
of an averaging technique [41]:

ȧ = − ct

2m
a − 1

2ω
ua sinψ (9)

aψ̇ = − a
2mω

(
−mω2 + Keq(a)

)
− 1

2ω
ua cosψ (10)

where ct is the total damping coefficient defined as

ct = cm +
Φ2

R + RT
(11)

and Keq is the equivalent stiffness defined as

Keq(a) =
1
πa

∫ 2π

0
f (a cos θ) cos θdθ (12)

The autonomous system represented by Eqs. (9) and (10) governs the slow modulation dynamics of the amplitude and
phase delay of the harvester’s response.

The steady-state amplitude and phase delay are derived as the equilibrium of this autonomous system. This is
done by setting the left-hand sides of Eqs. (9) and (10) equal to zero, leading to

a2
[
(−mω2 + Keq(a))2 + (ctω)2

]
= (mua)2 (13)

which implicitly defines the frequency response curve for the displacement amplitude. Also, the equilibrium of Eqs.
(9) and (10) gives the frequency response curve for the phase delay as

ψ = atan2
(
−ctω,−

(
−mω2 + Keq(a)

))
(14)

The stability of the steady-state solution is determined by examining the Jacobian of Eqs. (9) and (10) at the equilib-
rium, which reduces to the stability condition given by

dω
da

(−mω2 + Keq(a)) > 0 (15)

In general, the implicit representation of the frequency response curve (given by Eq. (13) in the presented case)
must be solved numerically by finding ω−a curves that equate the left-hand side and right-hand side of the equation.
It can be analytically solved, however, in the presented case because Eq. (13) is a quadratic equation with respect to
ω2. Solving Eq. (13) with respect to ω2 for a given a followed by taking the square root gives the positive solutions
of ω as

ω =

√√√√
Keq(a)

m

1 − 2ζ2
eq(a) ±

√(
mua

Keq(a)a

)2

− 4ζ2
eq(a)(1 − ζ2

eq(a))

 (16)
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where ζeq(a)=ct/(2
√

mKeq(a)). This reduces to

ω =

√
Keq(a)

m

1 ± 1
2

√(
mua

Keq(a)a

)2

− 4ζ2
eq(a)

 + O(ε2) (17)

or

ω =

√
Keq(a)

m
± 1

2

√
m

Keq(a)

(ua

a

)2
−

(ct

m

)2
+ O(ε2) (18)

by considering a small damping ratio and the resonating condition, which respectively imply ζeq=O(ε) and mua/(Keqa)=O(ε).
The second term on the right-hand side of Eq. (18) is O(ε), which legitimizes the assumption of ω=

√
Keq(a)/m+O(ε);

the first term is the backbone curve that defines the amplitude-dependent equivalent natural frequency.
The accuracy of the steady-state solution given by Eq. (16) as well as the validity of the approximation performed

from Eq. (16) to Eq. (18) are verified for harvesters with odd-power nonlinearity, which is mathematically defined in
Appendix B, for n=1, n=2, n=5, and n=25. The verification results are presented in Fig. 2, in which the abscissa and
ordinate axes are normalized by the linear natural frequency ω0=

√
k0/m and static displacement xst=mua/k0, respec-

tively. The solid red lines and dashed red lines are the stable and unstable branches, respectively, of the resonance
curves given by Eq. (16) for four different values of β, which correspond to the cases where the resonance frequency
ωr equals ω0 (linear), 1.5ω0, 2ω0, and 3ω0, i.e., γ=1, 1.5, 2, and 3, where γ=ωr/ω0. Whereas, the solid and dashed
black lines are the resonance curves given by Eq. (17) (or Eq. (18)) with the same configuration as the red lines, ig-
noring the second and higher-order terms. Furthermore, the circles and triangles show the steady-state amplitudes for
upward- and downward-swept frequencies, respectively, which are obtained by numerically integrating Eq. (3) with
the MATLAB ode45 scheme. From the figure, it can be observed that the steady-state solutions given by Eq. (16)
derived by the averaging method agree well with the direct numerical solutions for a wide range of frequencies, even
for strong nonlinearity cases, and that the approximation given by Eq. (17) (or Eq. (18)) is valid close to the resonance
peaks where the red and black lines almost coincide.

The amplitude at the resonance peak ar is derived by finding a for which the inside of the inner square root of Eq.
(18) vanishes, such that

ar =
mua

ctωr
(19)

where the frequency at the resonance peak ωr is derived from the first term on the right-hand side of the same equation
as

ωr =

√
Keq(ar)

m
(20)

The above Eqs. (19) and (20) define a system of equations that implicitly determines the resonance frequency and
amplitude of lightly damped nonlinear resonators, the appearance of which is formally the same as that for linear
resonators.

2.3. Graphical approach

From Eqs. (20) and (19), one can define curves C1 and C2 on the (ω, a)-plane, respectively defined as

C1: ω =

√
Keq(a)

m
(21)

and
C2: aω =

mua

ct
(22)

Then, the resonance peak point (ωr, ar) is interpreted as the intersection of these two curves. This interpretation is
legitimate as one can observe in Fig. 3 that the tip of the resonance peak is located at the intersection of C1 and
C2, and plays a key role in this study, providing a geometrical perspective for the design of the nonlinear wideband
electromagnetic harvester.
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Figure 2: Verification of the frequency response curves derived by the averaging method by comparing with numerical solutions. The verification
is conducted for the harvesters with odd-power nonlinearity, which is mathematically defined in Appendix B, for n=1, n=2, n=5, and n=25. The
solid and dashed red lines are the stable and unstable branches of the resonance curves, respectively, given by Eq. (16) for four different values
of γ, which correspond to the cases where the resonance frequency ωr equals ω0 (linear), 1.5ω0, 2ω0, and 3ω0. The solid and dashed black
lines are the resonance curves given by Eq. (17) (or Eq. (18)) with the same configuration as the red lines, ignoring the second and higher-order
terms. The circles and triangles show the steady-state amplitudes for upward- and downward-swept frequencies, respectively, which are obtained
by numerically integrating Eq. (3). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Curve C1, drawn as a chain line in Fig. 3, is a curve called the backbone curve determined merely by the force-
displacement relationship of the nonlinear spring that has a positive dω/da everywhere due to its hardening charac-
teristics. Whereas, curve C2 is a monotonically decreasing hyperbolic function of the frequency, shown as a bold line
in Fig. 3 that depends on the mass, excitation magnitude, mechanical damping, and electrical damping quantities.

When the force-displacement relationship of the nonlinear spring is fixed, curve C1 is fixed. The larger excitation
magnitude and mass, and the smaller damping (both mechanical and electrical) move curve C2 upward. Therefore,
the intersection between C1 and C2, i.e., the resonance peak point, moves to a higher frequency and larger amplitude.
This point of view also reveals how the load resistance R affects the resonance peak. Recalling Eq. (11), a larger load
resistance makes the total damping smaller. Therefore, the resonance peak point moves rightward along backbone
curve C1 as the load resistance increases, and the movement is bounded by the intersections with curves C2 for the
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Figure 3: The resonance curves given by Eq. (17) (or Eq. (18)) for the same configuration as Fig. 2, depicted with the corresponding curves C1 and
C2. This figure is shown to demonstrate how the proposed graphical approach can explain the location of the resonance peak point. Curve C2 for
each case is drawn assuming optimal load ρopt, which is described in Section 3.1.

short circuit and open circuit cases that are depicted by bold dashed lines in Fig. 3.
Conversely, when curve C2 is fixed, the shape of backbone curve C1 governs where the resonance peak point will

be located. Generally speaking, the more deeply bent the backbone curve is, the higher the resonance frequency. This
implies that the shape of the backbone curve plays a key role in the design of the bandwidth of the nonlinear harvester,
which is investigated in the next section in terms of a power-based characterization of the bandwidth.

Those rather simple tendency of the behavior of the resonance peak point relies on the monotonically increasing
nature of C1 and the monotonically decreasing nature of C2, which are respectively guaranteed by the hardening
nonlinearity of the spring and the linearity of the damping, both of which were initially assumed in this study. It
should be emphasized that the graphical approach presented above, in which the resonance peak point is interpreted
as the intersection of curves C1 and C2, is still valid even if the spring is not purely hardening or the damping is
not linear. However, since one may experience more complicated situation described below in such cases, this study
assumes the hardening nonlinearity and linear damping to avoid excessive complexity.

First, if the nonlinear restoring function is not purely hardening but softening or even reversible [42], backbone
curve C1 is not monotonically increasing but the whole or some part of C1 has negative value of dω/da. Despite this
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difference, it should be possible to conduct power-bandwidth analyses and design studies similar to those developed
in this study if the intersection between C1 and C2 is single. But otherwise, one may have to consider the existence
of isolated stable branches of the steady-state solution that is located between the intersections, which require more
complicated and careful discussion when defining and evaluating the bandwidth of the resonance peak.

On the other hand, if the damping is nonlinear, the total damping coefficient ct in Eq. (22) should be replaced by
an equivalent total damping coefficient Ct,eq=Cm,eq + Φ

2/(R + RT ), where Cm,eq is the equivalent mechanical damping
coefficient [32]. Since the equivalent mechanical damping coefficient is generally a function of the displacement
amplitude a and excitation frequency ω [43], there is no guarantee in general that C2 defined by Eq. (22) will be a
hyperbola. On the contrary, it may have multiple intersections with C1 in some extreme cases, making the generalized
definition of the bandwidth complicated. Nevertheless, decreasing monotonicity of C2 can be expected in many cases,
(in fact, the C2 curves in the cases of velocity-squared damping [43] and Coulomb friction damping are hyperbolic
because Ct,eq is a function of aω in both cases), where the location of the resonance peak point has the same tendency
as described above, and thus the bandwidth discussion in the following sections is not affected.

For notational simplicity, an amplitude-dependent equivalent natural frequency ωeq(a) is hereafter introduced as
ωeq(a)=

√
Keq(a)/m. In addition, a dimensionless load resistance ρ and dimensionless electromechanical coupling

factor δ are defined as ρ=R/RT and δ=Φ2/(cmRT ), respectively. Then, the equations of C1 and C2 can be rewritten as

C1: ω = ωeq(a) (23)

and
C2: aω =

mua

cm

1
1 + δ/(1 + ρ)

(24)

Note that the electromechanical coupling factor δ is the ratio of the electrical damping of a short-circuited electro-
magnetic transducer, Φ2/RT , to the mechanical damping, cm, and the factor δ/(1 + ρ) in Eq. (24) corresponds to the
ratio of the electrical damping of the transducer terminated by the load resistance R to the mechanical damping.

3. Power and bandwidth analysis

3.1. Power analysis

The instantaneous harvested power is calculated as the electric power consumed by the load resistance as

P(t) = [Φẋ(t)]2 R
(R + RT )2 (25)

Substituting the steady-state solution ẋ(t)=−aω sin(ωt−ψ) followed by taking the average over the period leads to the
averaged harvested power given by

P =
Φ2a2ω2

2
R

(R + RT )2 (26)

The harvested power at the resonance peak is thus calculated as follows from Eq. (26) by evaluating it at the resonance
peak point (ωr, ar) followed by applying Eqs. (19) and (11):

Pr =
Φ2a2

rω
2
r

2
R

(R + RT )2

=
Φ2m2u2

a

2
(
cm +

Φ2

R+RT

)2

R
(R + RT )2

=
m2u2

a

2cm

ρδ

(1 + ρ + δ)2 (27)

Eq. (27) states that the harvested power at the resonance peak is determined by the mass of the resonator, base-
excitation magnitude, mechanical damping, electromechanical coupling factor, and load resistance, not by the reso-
nance frequency. This means that the height of the resonance peak in the frequency-power curve is independent of the
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stiffness of the resonator, whether it is linear or nonlinear, as pointed out in the literature [8, 27], as long as the values
of the other parameters are the same.

From Eq. (27), the optimum load resistance that maximizes the harvested power at the resonance peak is derived
in a dimensionless form as

ρopt = 1 + δ (28)

and thus the maximized power is

Pr,opt =
m2u2

a

8cm

δ

1 + δ
≤ m2u2

a

8cm
(29)

The upper bound of the harvested power is realized when the electromechanical coupling factor goes to infinity, and
the upper bound increases for larger mass, larger input, and smaller mechanical damping, as in the linear case [2].

From Eq. (26), it is found that the same value of aω gives the same harvested power. Therefore, the harvested
power is constant on the hyperbola aω=const, which is hereafter called the iso-power curve in this paper. In this
terminology, curve C2 is an iso-power curve passing through the tip of the resonance peak.

3.2. ν-power bandwidth

For a linear resonator, the bandwidth of its resonance peak is usually measured by the half-power bandwidth,
which is defined as the range of frequencies for which the power is greater than half of its peak value. This is simply
determined by taking a cross-section of the frequency response curve on the (ω, a)-plane with respect to a horizontal
line at 1/

√
2 of the peak value.

For nonlinear resonators, similar measures of the bandwidth are adopted in the literature. Ramlan et al. [27]
discussed the harvested power for an energy harvester comprising hardening stiffness with cubic nonlinearity, and
derived a closed-form representation of its half-power bandwidth, which was calculated in the same way as the linear
resonator by taking a cross-section of the frequency-displacement curve with respect to 1/

√
2 of the peak value.

This method of calculation, however, can result in an overestimate of the bandwidth when the nonlinearity of the
resonator is strong. Sebald et al. [28] studied the power and bandwidth of piezoelectric energy harvesters with cubic
nonlinearity. They evaluated a half-power bandwidth by directly taking a cross-section of the power-frequency curve
with respect to the half of the peak value, and normalizing it by taking a ratio with respect to the peak frequency. The
same definition of the bandwidth can also be found in Cottone et al. [44] and Roy et al. [45].

In this study, a ν-power bandwidth is newly introduced as a straightforward extension of the half-power bandwidth,
and is defined as the difference of the upper and lower frequencies at which the ratio of the power to its peak value is
reduced to ν, where 0<ν<1. In the following, a formulation of the ν-power bandwidth and its graphical representation
are given, and a further simplified formulation is approximately derived under the lightly damped condition.

At the intersection of the power-frequency curve with power level Pν, which is ν times the peak value Pr, it holds
that

P = Pν = νPr (30)

Then, applying Eqs. (26) and (27) to Eq. (30) yields

aω =
√
νarωr (31)

Eq. (31) defines an iso-power curve C3 on (ω, a)-plane representing a boundary above which the harvested power
is greater than ν times the maximum. Therefore, the intersection between C3 and the resonance curve bounds the ν-
power band. More precisely, if the frequency response curve is a single-valued function of the frequency, as illustrated
in Fig. 4 (a), the frequencies of the left and right intersections, which are respectively denoted by ω1 and ω2 in the
figure, give the lower and upper boundaries, respectively. Whereas, if the frequency response curve has a multivalued
region, as illustrated in Fig. 4 (b), the upper boundary is given by the jump-down frequency, which is approximately
equal to the resonance frequency ωr. Thus, a dimensionless form of the ν-power bandwidth, ν-PBW, is defined as
follows by normalizing the difference of the boundary frequencies by the resonance frequency:

ν-PBW =
{

(ω2 − ω1)/ωr (for single-valued frequency response)
(ωr − ω1)/ωr (for multivalued frequency response) (32)
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Figure 4: Calculation of the ν-power bandwidth from the intersection frequencies of the resonance curve and the iso-power curve C3 for ν=1/4,
for the case of single-valued frequency response ((a) and (c)), and the case of multivalued frequency response ((b) and (d)). The plots in (c) and
(d) are the closeup view of the intersection shown in (a) and (b), respectively. Frequencies ω′1 and ω′2 are the approximation of the true intersection
frequencies ω1 and ω2 given by Eq. (38). The center frequency ων=ωeq(aν) is used to define ν-PBW′′ as Eq. (40), a further approximation of the
ν-power bandwidth, which is adopted in the successive sections to quantify the bandwidth.

In order to evaluate the ν-PBW given by Eq. (32), the intersection frequencies ω1 and ω2 have to be specified.
These are derived by first eliminating ω from Eq. (31) by using Eq. (17) to get

1
4

(
mua

Keq(a)a

)2

− ζ2
eq(a) =

(√
ν

√
m

Keq(a)
arωr

a
− 1

)2

(33)

which is further rewritten by considering Eq. (19) as

ζ2
eq(a)

( arωr

aωeq(a)

)2

− 1

 = (√
ν

arωr

aωeq(a)
− 1

)2

(34)

and then solving Eq. (34) with respect to a, followed by substituting it into Eq. (17).
Instead, recalling the weak damping and resonance assumptions, i.e., ζeq=O(ε) and ar/a=O(1), and further assum-

ing that the equivalent natural frequency for the supposed range of a is in the same order of the resonance frequency ,
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i.e., ωr/ωeq(a)=O(1), Eq. (34) reduces to
aωeq(a) =

√
νarωr (35)

by evaluating the left-hand side negligibly small. Eq. (35) can be further divided into a system of equations composed
of

aω =
√
νarωr (36)

which is again the equation of curve C3, and
ω = ωeq(a) (37)

which is the equation of curve C1 (the backbone curve). Hence, the ordinate value of the intersection of curves C1
and C3, which is denoted by aν, gives the solution of Eq. (35), i.e., an approximation of the solution of Eq. (34). By
introducing this approximation, the approximate values of ω1 and ω2, which are respectively denoted by ω′1 and ω′2,
are derived by evaluating Eq. (17) for a=aν, and then applying Eqs. (19) and (35) as

ω′1, ω
′
2 = ωeq(aν)

1 ∓ ζeq(aν)

√
1 − ν
ν

 (38)

both of which are also depicted in Figs. 4 (c) and (d). Therefore, an approximated dimensionless ν-power bandwidth,
ν-PBW′, is derived as follows by replacing ω1 and ω2 in Eq. (32) by ω′1 and ω′2, and substituting Eq. (38):

ν-PBW′ =


2ζeq(aν)

√
1−ν
ν

ωeq(aν)
ωr

(for single-valued frequency response)

1 −
(
1 − ζeq(aν)

√
1−ν
ν

)
ωeq(aν)
ωr

(for multivalued frequency response)
(39)

Eq. (39) gives a theoretical basis of how a resonance band much wider than that of a linear resonator is accom-
plished when the frequency response is multivalued. This can be understood by considering that the dimensionless
ν-power bandwidth of a linear resonator with a damping ratio of ζ=O(ε) is derived as 2ζ

√
(1 − ν)/ν=O(ε), whereas

that of the nonlinear resonator with a multivalued frequency response is evaluated from Eq. (39) as O(1) because
1−ωeq(aν)/ωr=O(1). In this case, the dimensionless ν-power bandwidth gives the allowable rate of the descent of
the excitation frequency from the resonance frequency to guarantee that the harvested power is at least ν times the
maximum value, given the specific harvester design and excitation amplitude.

Notably, multivalued resonance emerges when the nonlinearity of the restoring force is sufficiently strong, exci-
tation is sufficiently large, and damping is sufficiently low. These conditions were explicitly formulated by Malatkar
and Nayfeh [46] in the case of the Duffing oscillator using the Sylvester resultant. A straightforward extension of the
same mathematical treatment would be possible, leading to similar explicit conditions even in the case of the higher
order nonlinearity.

For a more simplified formulation, the second row of Eq. (39) is further reduced, by considering ζeq(aν)=O(ε), to

ν-PBW′′ = 1 −
ωeq(aν)
ωr

(40)

which is analogous to the approximation presented by Ramlan et al. [27]. The above definition of ν-PBW ′′ is adopted
hereafter to quantify the bandwidth.

Recalling that (ωeq(aν), aν) is the intersection of curves C1 and C3, and that backbone curve C1 is bounded by
four lines, ω=ω0, ω=ωr, a=0, and a=ar, it is concluded that ωeq(aν)>max(ω0,

√
νωr)=max(ωr/γ,

√
νωr). Therefore,

the dimensionless bandwidth ν-PBW′′ is bounded from above as

ν-PBW ′′ < min
(
1 − 1

γ
, 1 −

√
ν

)
(41)

For demonstrative purposes, the ν-power bandwidth of the resonators with odd-power nonlinearity is being calcu-
lated. This is done by first evaluating Eq. (35) for the backbone curve specified by Eq. (B.11), leading to

α
[
1 + (γ2 − 1)αn

]
= νγ2 (42)
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Figure 5: The dependency of the ν-power bandwidth ν-PBW′′ on γ, the ratio of the resonance frequency to the linear natural frequency, and n, the
order of the odd-power nonlinearity, for ν=1/2 (plotted in thin black lines) and 1/8 (plotted in thin red lines). The bold dashed black line shows
the curve 1−1/γ, and the thin chained black lines show 1−

√
ν. The plot indicates that the bandwidth becomes broader as the value of γ increases,

and exhibits saturation at the value given by Eq. (44). Moreover, the bandwidth approaches its upper bound given by Eq. (41) as the order of the
nonlinearity increases. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where α is defined as α=(a/ar)2, and then solving Eq. (42) with respect to α to obtain aν=
√
ανar, where αν is the

solution of Eq. (42). The ν-power bandwidth is derived by evaluating Eq. (40) for the resulting aν, or directly derived
from

ν-PBW ′′ = 1 −
√

ν

αν
(43)

which is obtained by rewriting Eq. (40) using Eq. (35).
Fig. 5 shows the ν-PBW ′′ of the harvesters with different orders of nonlinearity, n=1, 2, 5, and 25, as a function

of γ, for ν=1/2 and 1/8. It is obvious that every curve plotted in Fig. 5 exhibits saturation at a certain value of the
bandwidth, which is calculated from Eqs. (42) and (43) by taking the limit γ→∞ leading to

ν-PBW′′
∣∣∣
γ→∞ = 1 − νn/(2n+2) (44)

This equation suggests that as the order of the nonlinearity becomes larger the saturation value approaches 1−
√
ν.

Moreover, Fig. 5 indicates that the value of ν-PBW ′′ also comes closer to 1−1/γ in the region where γ is small. From
these findings, it is concluded that the more deeply the backbone curve bends, the closer the bandwidth is to its upper
bound described by Eq. (41).

3.3. Dependence of power-bandwidth performance on coupling strength and load resistance
The impact of the electromechanical coupling factor and load resistance on the power-bandwidth performance of

the harvester is particularly focused on in this section. Given the design of the mechanical part of the resonator, the
peak power given by Eq. (27) and the equations of curves C2 and C3 given by Eqs. (24) and (31) are respectively
rearranged as

Pr(δ, λ) =
m2u2

a

2cm

δλ

(1 + δ)(1 + λ)2 (45)
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Figure 6: Displacement-frequency response (a) and power-frequency response (b) for the case of optimal load (plotted in thin solid red lines) and
the case of a larger load, i.e., four times the optimal load, (plotted in thin solid black lines). The corresponding C2 curves and the 1/2-power
bands (half-power bands) are depicted by bold solid lines and colored rectangular areas, respectively. The plots indicate that by increasing the
load resistance the half-power band is slightly widened, but in return, the harvested peak power is significantly reduced as the load impedance is
mismatched. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

C2(δ,λ): aω =
mua

cm

λ + 1/(1 + δ)
1 + λ

(46)

and
C3(δ,λ): aω =

√
ν

mua

cm

λ + 1/(1 + δ)
1 + λ

(47)

by parametrizing the load resistance as ρ=λρopt=λ(1+δ).
First, let us consider the effect of the electromechanical coupling strength on the harvested power and ν-power

bandwidth. As Pr(δ, λ)/Pr(∞, λ)=δ/(1+δ), derived from Eq. (45), a strong coupling, e.g., δ>10, can provide power
sufficiently close to its maximum, i.e., the power for the infinite coupling case. Furthermore, since the right-hand sides
of Eqs. (46) and (47) are approximated by muaλ/[cm(1 + λ)] and

√
νmuaλ/[cm(1 + λ)], respectively, if 1/(1+δ)≪λ,

which is true when the coupling is strong and λ≥1, the resonance peak point as well as the ν-power bandwidth are
sufficiently close to those for the infinite coupling case. These findings suggest that, if one achieves a design of the
transducer with a certain level of coupling strength, further pursuit of stronger coupling is almost meaningless, and
thus, one can safely assume δ→∞ when evaluating the power-bandwidth performance.

Next, the effect of the load resistance on the power-bandwidth performance is detailed. Fig. 6 shows an illustrative
example in which the displacement responses and power responses are plotted along with their 1/2-power bands for
the optimal load case (λ=1), and a larger load case (λ=4) aiming to shift the peak frequency higher. It is apparent
from Fig. 6 (a) that, for the case with λ=4 (thin solid black line), a peak frequency 1.22 times higher than the optimal
load case (thin solid red line) is achieved, and consequently, the half-power band is slightly widened as depicted in
the figure by colored areas. However, at the cost of the small gain in the bandwidth, the harvested peak power is
significantly reduced since the load impedance is mismatched.

The dependency of the peak power performance on the load resistance is characterized by taking the ratio of the
power given by Eq. (45) to the power with the optimal load leading to the following expression:

Pr(δ, λ)

Pr(δ, 1)
=

4λ
(1 + λ)2 (48)

Apparently, the optimal value of λ is one. Meanwhile, the dependency of the resonance bandwidth on λ can be
clarified by evaluating the ratio of the ν-power bandwidth to that for the optimal load case. Fig. 7 shows the power
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Figure 7: The ratio of the power to its optimal load case given by Eq. (48) (plotted in dashed red line), and the ratio of the ν-power bandwidth to its
optimal load case for ν=1/2, δ=50, and n=1, 25 (plotted in solid black lines). It is concluded from the figure that setting the load resistance higher
than its optimal value may slightly increase the bandwidth, but not be beneficial enough to sacrifice the power performance. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

ratio given by Eq. (48) and the bandwidth ratio ν-PBW ′′(δ, λ)/ν-PBW′′(δ, 1) for ν=1/2 and δ=50. It is evident from
this figure that setting a load resistance higher than its optimal value may slightly increase the bandwidth, but is not
recommended because the gain in the bandwidth is outweighed by the loss of the power performance. For this reason,
the optimal load resistance is assumed in the next section when considering the design scheme.

4. Power-bandwidth design

4.1. Problem statement and assumptions

In this section, the process of designing a nonlinear vibration energy harvester with a hardening restoring force to
achieve its optimal power-bandwidth performance under the given design requirements is presented. In the design of
vibration energy harvesters, the frequency characteristics of the resonator are required to match those of the vibration
source to maintain the resonator responding in resonance. For nonlinear harvesters, the vibration source is usually
assumed to be sinusoidal with a slowly or occasionally changing frequency and amplitude. Thus, the resonator’s
bandwidth is required to cover the prospective range of such a fluctuation in the frequency and amplitude of the
vibration source. The size of the harvester is another critical design requirement because it limits the allowable stroke
of the resonator as well as its effective mass.

Therefore, the design problem addressed in this section is stated as follows: for a given range of the fluctuation
in the frequency and amplitude of the base acceleration, to design a nonlinear harvester with the maximum ν-power
bandwidth for the predetermined device size requirement.

The following assumptions are made to quantify and simplify the design problem:

• The frequency ω and amplitude ua of the base acceleration fluctuate independently, within the ranges of
[ωlb, ωub] and [ulb

a , u
ub
a ], respectively.

• The mass m of the resonator as well as its stroke limit L are predetermined such that they meet the device size
requirement.

• The value of the mechanical damping cm is predetermined. This is a reasonable assumption when the resonator’s
structure is carefully designed such that the mechanical damping ratio ζ is sufficiently small, e.g., less than 0.01,
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Figure 8: Diagram illustrating the assumed excitation conditions on the (ω, a)-plane. Curves C2lb and C2ub (plotted in bold black lines) are the
C2 curves for the excitation amplitudes of lower bound ulb

a and upper bound uub
a , respectively. The gray area depicts the excitation frequency band

bounded by ω=ωlb and ω=ωub. Curves C11, C12, and C13 are the backbone curves for different strengths of nonlinearity, i.e., n=5 with different
values of β. The CRP is the intersection of C2lb and line ω=ωub. In the illustrated case, backbone curve C12 is the one that conforms to the CRP.

at the operating frequency. Then the value of cm can be estimated as cm=2ζmωrep, where ωrep=(ωlb+ωub)/2 is
the representative operating frequency.

• The electromechanical coupling is strong enough, e.g., δ>10, and the load resistance is set to be optimal.

As mentioned in the introduction, the design of nonlinear vibration energy harvesters is always accompanied with
the problem of coexisting multiple solutions. This is critical particularly in the situation assumed above, in which
the frequency and magnitude of the vibration source may fluctuate, because the response of the nonlinear resonator
easily drops to the low-energy branch, which generates almost no power. This difficulty, however, is expected to be
overcome by introducing some additional techniques that work to maintain the resonator’s response in the highest-
energy branch [28, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Therefore, in this study, the problem of coexisting multiple
solutions is excluded from consideration as it can be solved separately.

4.2. Design scheme

Fig. 8 shows a diagram that illustrates the assumed conditions on the (ω, a)-plane. Curves C2lb and C2ub are the C2
curves for the excitation amplitudes of lower bound ulb

a and upper bound uub
a , respectively. The excitation frequency

band bounded by ω=ωlb and ω=ωub is depicted by the gray area. Given these conditions, it is necessary to guarantee
the existence of a high energy branch for all possible combinations of excitation frequencies and amplitudes to exploit
the advantages of nonlinear resonators.

The design scheme begins with determining the location of a “critical” resonance point on the (ω, a)-plane. Let
us suppose the resonators with a specific nonlinearity. Curves C11, C12, and C13 in Fig. 8 are the backbone curves
of resonators with different strengths of nonlinearity, i.e., weak, medium, and strong, respectively. The intersection
between one of these C1 curves and C2lb, depicted by Pn (n=1, 2, 3), is the resonance point for the excitation with the
lowest level, while the intersection depicted by P′n is the resonance point for the highest level. This means that the
segment of C1n bounded by Pn and P′n forms the set of resonance points for all the possible levels of excitation.
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Considering the fact that the right-end of the high energy branch is terminated by the resonance point, it is thus
necessary that all the possible resonance points must be located right outside of the excitation frequency band [ωlb,
ωub] to guarantee the existence of the high energy branch inside. Therefore, it is concluded that the case in which the
resonance point for the lowest level of excitation is located on the upper boundary of the excitation frequency band is
critical to meet this requirement. More specifically, this resonance point is the intersection of C2lb and line ω=ωub,
which hereafter will be called the CRP.

In determining the CRP, it would be useful to mention a few points. First, the assumptions regarding the excitation
frequency and amplitude may not always be satisfied in practical situations, even if they are set very conservatively.
The excitation amplitude may accidentally become smaller than the lower limit ulb

a , or the excitation frequency may
exceed the upper limit ωub. If this happens, one has to admit the case that there no longer is the high energy branch for
some excitation frequencies, and the only thing one can do is to wait for the excitation to return to the predetermined
range of frequency and amplitude. Second, according to Eq. (46), curve C2 depends not only on the given excitation
condition but also on the design parameters, namely, the mass m and mechanical damping cm related to the mechanical
design of the resonator, electromechanical coupling factor δ dependent on the transducer design, and load resistance
magnitude λ to be selected optimal. As the selection of the CRP relies on these design parameters, which should be
readjusted during the iteration process of the design work, the location of the CRP should also be adjusted during
the design process. Third, the response amplitude for all possible excitation conditions should be smaller than the
stroke limit L. This implies that the CRP must be below the line a=L with an appropriate margin. If the CRP once
determined from curve C2lb and line ω=ωub unfortunately exceeds the stroke limit, it may be worth considering to
expand the stroke limit by easing the device size requirement in order to exploit the harvester’s potential performance.

Once the CRP is appropriately selected, what follows next is the determination of the force-displacement relation-
ship of the mechanical spring of the resonator that provides the optimal nonlinearity for the power generation. This
is done by maximizing the ν-power bandwidth while keeping the resonance peak point at the CRP by selecting an
appropriate value of γ. This is equivalent to setting an appropriate value of the linear natural frequency ω0, such that
the harvester can tolerate the ωlb as low as possible. More concrete and quantitative discussions will be presented in
the next section.

4.3. Design study for harvesters with odd-power nonlinearity

A design study is performed in this section for a harvester with odd-power nonlinearity for given design require-
ments. Suppose that the excitation conditions ωlb, ωub, ulb

a , and uub
a are given, and the parameters m, cm, L are

predetermined. Then, the CRP is reasonably determined from curve C2lb and line ω=ωub.
The nonlinear restoring force function is determined so that its backbone curve passes through the CRP. The set

of such functions is formulated by using Eqs. (B.1) and (B.9), resulting in

f (x) =
kCRPaCRP

γ2

( x
aCRP

)
+
γ2 − 1

An

(
x

aCRP

)2n+1 (49)

where kCRP=mωCRP
2, and (ωCRP, aCRP) is the location of the CRP. The concrete shape of the force function f (x) is

finalized by choosing γ for the assumed value of n, such that the ν-power bandwidth is maximized. From Fig. 5, it
is evident that a larger γ results in a wider bandwidth, hence the optimal value of γ is infinite, which is however a
meaningless conclusion. On the other hand, setting the value of γ too large should be avoided because it requires that
the backbone curve be more deeply bent, which means more apparent hardening of the nonlinear spring, which could
lead to difficulties in designing the spring mechanism. Considering that every curve shown Fig. 5 exhibits saturation
at the value of the bandwidth given by Eq. (44), one reasonable choice is to select the value of γ that achieves a
bandwidth slightly smaller than its saturated value, e.g., 90% of it.

The resultant values of γ for ν=1/2 and n=1, 2, 5, 25, and the resultant values of ν-PBW ′′ are listed in Table 1.
It can be seen from the table that a higher order nonlinearity achieves a wider bandwidth with smaller values of γ.
Note that selecting the value of γ means selecting the linear natural frequency ω0 because the resonance frequency is
already fixed by the location of the CRP. The force-displacement curves of the resultant f (x) and the resonance curves
for n=1 and 25 are plotted in Fig. 9. It is shown that a higher order nonlinearity can achieve a wider bandwidth with
higher values of the linear natural frequency.

16



Table 1: Results of the design study; the resultant values of γ and ν-PBW′′ for ν=1/2 and n=1, 2, 5, 25 are listed. It is found that a higher order of
nonlinearity achieves wider bandwidth with smaller values of γ.

n 1 2 5 25
γ 2.45 2.14 1.75 1.39
1/2-PBW ′′ 0.143 0.186 0.226 0.255
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Figure 9: Results of the design example for n=1 and 25; (a) force-displacement curves given by Eq. (49), and (b) frequency-displacement curves.
Both plots are normalized by the values on the CRP. In (b), curves C2 and C3 for ν=1/2 are also plotted. Light gray and dark gray areas are the
1/2-power bands (half-power bands) for n=1 and 25, respectively. It is shown that a higher order of nonlinearity achieves a wider bandwidth with
smaller values of γ, i.e., higher values of the linear natural frequency.

An actual nonlinear resonator may not have an exact odd-power nonlinearity. Even in such a case, the design
procedure proposed in Sections 4.2 and 4.3 can effectively be used by making a diagram corresponding to Fig. 5 for
the given class of nonlinearity. Otherwise, if the force-displacement relationship is reasonably approximated by an
odd-power function, the above discussion can directly be applied.

Moreover, to implement the proposed design scheme, it is necessary to design and fabricate a spring that has
a resonance point at the predetermined CRP, as described in Eq. (49). Currently, the trial-and-error approach is
realistic, and the synthesis of a spring with desired characteristics is a challenge. One possibility is to take a synthesis
approach proposed by Zou et al. [47, 48], in which a cam-like mechanism is used to achieve arbitrary restoring force
characteristics.

5. Conclusions

In this paper, a theoretical foundation for designing the power and bandwidth performance of nonlinear vibration
energy harvesters was established based on analytical formulae derived from the first-order steady-state solution of
the mathematical model of an electromagnetic harvester with a hardening resonator.

First, a graphical approach was proposed to provide a clear understanding of how the design parameters and ex-
citation conditions determine the location of the resonance peak point on the frequency-displacement curve. It was
revealed that the resonance peak point is located at the intersection between an iso-power curve and the backbone
curve, the former of which is determined by the excitation magnitude, mass, and total damping, whereas the latter
by the equivalent stiffness of the nonlinear restoring force. Then, a ν-power bandwidth, a generalized version of the
half-power bandwidth, was defined, and its approximate formulation was presented. Based on the findings of the
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parameter study on the ν-power bandwidth, a design scheme that aims to optimize the ν-power bandwidth under as-
sumed design requirement was developed. The proposed scheme begins with specifying the CRP, the resonance point
that guarantees the existence of the high-energy branch of the solution under possible variations of the excitation, fol-
lowed by determining the linear natural frequency that makes the ν-power bandwidth as large as reasonably possible.
Finally, a design study for a harvester with odd-power nonlinearity was performed, and it was found that a higher
order nonlinearity is advantageous because it can achieve a wider bandwidth with higher values of the linear natural
frequency.

In summary, this work provides a rational way to maximize the power-bandwidth performance of a nonlinear
vibration energy harvester while incorporating various design requirements. Because this work first assumes that the
resonator can maintain its high-energy response by introducing some extra methodologies, the stability margin of
the high-energy solution is beyond the scope of this work. Needless to say, a large stability margin helps maintain
the high-energy solution under disturbances. As the parameters and functions obtained through the proposed design
scheme may also have significant influences on the stability margin, there is a need to elucidate these influences and
investigate a design methodology that maximizes the bandwidth while ensuring the stability margin, which would be
one of future works to be addressed. In addition, experimental verification and extension of this study to other types
of nonlinearity (softening, reversible, etc.) should be addressed in future study.
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Appendix A. The order evaluation of the right-hand side of Eq. (8)

Let us suppose that maω2, the amplitude of the inertial force acting on the mass of the harvester, is O(1). If the
harvester is operated in the primary resonance condition, then mua, the amplitude of the excitation force, should be
O(ε) because it is much smaller than maω2. Therefore, the third term on the right-hand side of Eq. (8) is O(ε). Also,
since the inertial force −maω2 cos θ and restoring force f (a cos θ) almost balance each other during the resonance,
it can be assumed −maω2 cos θ + f (a cos θ)=O(ε). This means that the first term on the right-hand side of Eq. (8) is
O(ε). In addition, if the mechanical and electrical damping of the harvester is light, the second term is also assumed
to be O(ε). Therefore, it can be concluded that the entire right-hand side of Eq. (8) is O(ε).

Appendix B. Resonators with odd-power nonlinearity

For concrete examples provided in this paper, the following class of nonlinear restoring force is assumed:

f (x) = k0

(
x + βx2n+1

)
(B.1)

where β>0, and n is a positive integer. The equivalent stiffness is calculated as

Keq(a) = k0

[
1 +

β

πa

∫ 2π

0
(a cos θ)2n+1 cos θdθ

]
= k0

(
1 + βAna2n

)
(B.2)

where
An =

(2n + 2)!
22n+1(n + 1)!(n + 1)!

(B.3)

For instance, for n = 1 (Duffing resonator),

Keq(a) = k0

(
1 +

3
4
βa2

)
(B.4)
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for n = 2,

Keq(a) = k0

(
1 +

5
8
βa4

)
(B.5)

for n = 5,

Keq(a) = k0

(
1 +

231
512

βa10
)

(B.6)

and for n = 25,

Keq(a) = k0

(
1 +

7934696527169663
36028797018963968

βa50
)

(B.7)

Let us suppose that the resonance peak point is located at (ωr, ar), and let ωr=γω0, where γ>1 is a positive number
of O(1). Then, it is required from Eqs. (20) and (B.2) that

Keq(ar) = k0

(
1 + βAna2n

r

)
= mωr

2 = mγ2ω2
0 (B.8)

From Eq. (B.8), and recalling that ω0=
√

k0/m, the parameter β is derived as

β =
γ2 − 1
Ana2n

r
(B.9)

Substituting this into Eq. (B.2) gives

Keq(a) = k0

1 + (γ2 − 1)
(

a
ar

)2n (B.10)

and the corresponding backbone curve is

ωeq(a) =

√
1 + (γ2 − 1)

(
a
ar

)2n

ω0 (B.11)

The force-displacement curves given by Eqs. (B.1) and (B.9) for various values of n are plotted in Fig. B.1 (a) with
γ=2. Fig. B.1 (b) displays the shapes of the corresponding backbone curves. The case for n=1 is the Duffing resonator.
A larger n gives a more distinct bend to both the force-displacement curve and backbone curve that converge to those
of a spring with rigid stoppers symmetrically placed at x=±ar.
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