

Global stabilization of high-energy resonance for a nonlinear wideband electromagnetic vibration energy harvester

Arata Masuda, Takeru Sato

Center for Manufacturing Technology Department of Mechanical and System Engineering Kyoto Institute of Technology Matsugasaki, Sakyo-ku, Kyoto 6068585, Japan

masuda@kit.ac.jp

Outline

Introduction

- Idea of nonlinear wide-band vibration energy harvesters
- Well-known difficulty coexistence attractors
- Proposition: use of the principle of self-excitation and entrainment
 - Load resistance switching
 - Global stability of highest-energy solution
- Experimental verification
 - Steady-state
 - Transient

Conclusions

Wide-band vibration energy harvester (VEH)

- Linear energy harvester has "power-bandwidth trade-off".
- Four categories of wider-band energy harvester: (Tang et al., 2010)

Duffing-type nonlinear VEH

- One of the most promising approaches.
- Moving/ fixed magnets, repulsive force, induction coils.
- This config can provide a significant wider bandwidth than linear.

Grayed region indicates where the steady-state response is unstable

SPIE Smart Structures and Materials/NDE and Health Monitoring, March 22 2016, Vas Vegas

5

Basins of attraction

- The set of initial conditions that lead to high-energy solution: blue
- The set of initial conditions that lead to low-energy solution: red

Even if the system is responding in the highenergy solution, it can easily drop down to the low-energy solution when subjected to disturbances.

Basins of attraction of two solutions (attractors) at a certain Poincaré map.

Abrupt change of excitation frequency

How can we keep the response large?

- We have to think of some mechanism to maintain the response on the high-energy solution even if the disturbance pushes the response out of the solution. → Global stabilization
- Done by destabilizing the low-energy solution.
- Q: how it is realized?

Load resistance switching

- Harvesting mode: normal harvesting circuit
- Excitation mode: self-excitation circuit with negative resistance
- Proposition: switch the circuit between harvesting/ excitation modes according to the displacement amplitude.

$$R(a) = \begin{cases} R_{positive} & (a \ge a_{\theta}); & \text{harvesting mode} \\ R_{negative} & (a < a_{\theta}); & \text{excitation mode} \end{cases}$$

This simple control law makes the system perform as self-excitation vibratory system, which is expected to yield "forced entrainment".

Basins of at

- The set of initial conditions that lead to high-energy solution: blue
- The set of initial conditions that lead to low-energy solution: red

Abrupt change of excitation frequency

Experimental verification

- Large-scale (L=23 mm, 100mW, 7.2 Hz) conceptual prototype
- Steady-state experiments
 - Forward/backward-swept sinusoidal excitation
 - Resonance curves
- Transient experiments
 - Impulsive disturbance

Conceptual prototype (L=23 mm, 100 mW, 7.2 Hz) Have the state of the s

Experimental setup

Experiment #1: steady-state

- Excite the harvester with sinusoidal swept waves in upward/ downward directions (u_a=0.3 g).
- Experimental results are compared with
 - theoretical solutions derived from a mathematical model by averaging method;
 - numerical solutions derived from the mathematical model by MATLAB ode45 function.

Results #1: Steady-state responses

- First excite the harvester in high-energy solution by sinusoidal wave in 6.6 Hz (u_a=0.3 g).
- Hit the end of the guide rod by hammer to see the transient response to the impulsive disturbance.

Transient response to impulsive disturbance

Response w/o control

Transient response to impulsive disturbance

Response w/ control

Transient responses

Conclusions

- In order to overcome the difficulty of coexistence solutions in a Duffing-type nonlinear energy harvester, a self-excitation technique is proposed.
- By switching the circuits between the harvesting and excitation modes, the proposed harvester can respond in the high-energy solution even subjected to the disturbance.
- The experimentally obtained steady-state response of the harvester well agreed with the solutions derived from the mathematical model.
- It was concluded from both the steady-state and transient experiments that the proposed load resistance switching successfully destabilized the low-energy solution and made the high-energy solution globally stable.